

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Innovationslabor Digital Findet Stadt

Herzlich Willkommen zu DFS LAUNCH

06.03.2025

Forschung die wirkt Lösungen zur Stärkung unserer Wirtschaft

Professionelles Projektmanagement

Forschungsleistungen, Bedarfserhebungen, technische Studien, Geschäftsmodellentwicklung

Organisation von Networking und Erfahrungsaustausch

Eigenmittel des Innovationslabors Digital Findet Stadt

Neue Technologien
Standardisierte Prozesse und UseCases,
Demonstratoren,
Weiterbildungen,
Leitfäden

PIONEER-Projekte

ERGEBNISSE

- Neue Services, Prozesse und Standards
- Publikationen, Positionspapiere und Leitfäden
- Fortbildung
- Sichtbarkeit und Positionierung in der Branche

INHALTE

- Offener Dialog und Erfahrungsaustausch in interdisziplinären Fachkreisen
- Externe & internationale Gastvorträge
- Einbindung von Politik, Verwaltung & Interessensvertretungen

VORTEILE FÜR PARTNER

- 20.000 50.000 EUR Forschungsdienstleistung (je nach Projektgröße) zum Preis der Mitgliedschaft
- Austausch mit den führenden Expert:innen der Branche

WER: PIONEER-Partner

WIE: ca. 5 Workshops pro Jahr & anschließendes Netzwerken, Hybrid

Unsere PIONEER-Projekte 2025

Vorstellung PIONEER-Projekt: Nutzung von Weltraumdaten

Patrick Pils
LETO SPACE

NUTZUNG VON WELTRAUMDATEN

Was erkenne ich von oben?

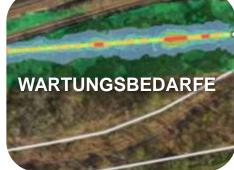
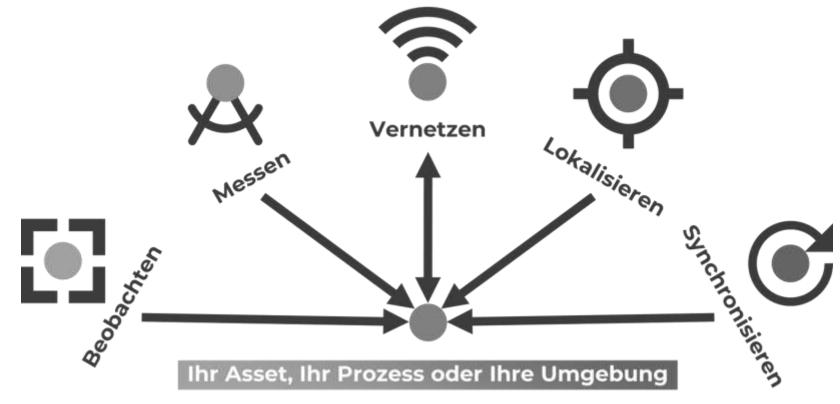


Image Credits:
Asterra
Capella Space

Planet SatVu SpaceKNOV Tre Altamira



Nutzung von Weltraumdaten

Das PIONEER-Projekt zur Nutzung von Weltraumdaten setzt sich mit der innovativen Anwendung von Satellitenund Luftbildaufnahmen in der Bau- und Immobilienwirtschaft auseinander.

In einer Zeit, in der Technologie zunehmend in die Prozesse der Branche integriert wird, bieten Weltraumdaten vielversprechende Möglichkeiten, Bauvorhaben effizienter zu planen, zu überwachen und zu steuern.

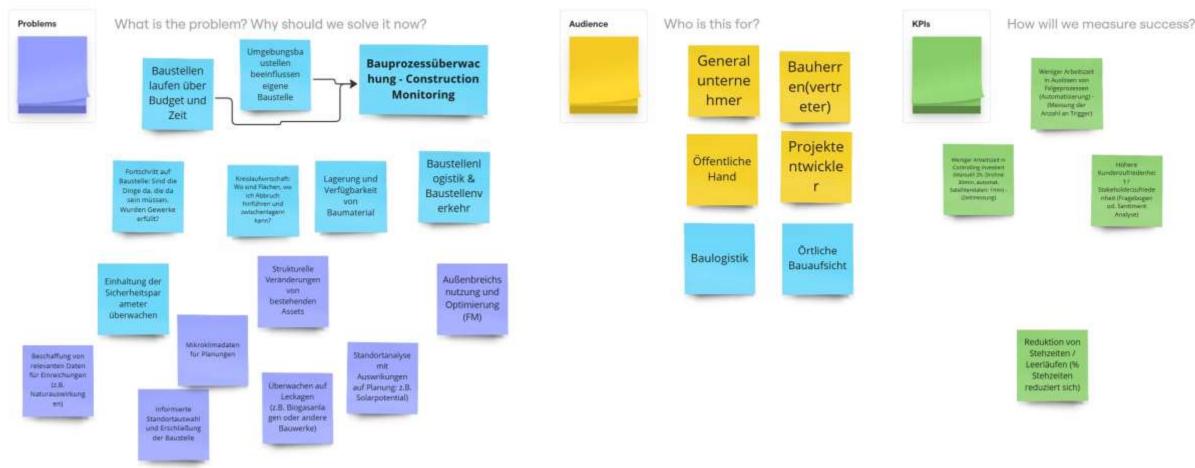
PIONEER: Nutzung von Weltraumdaten

März 2025 - Dezember 2025

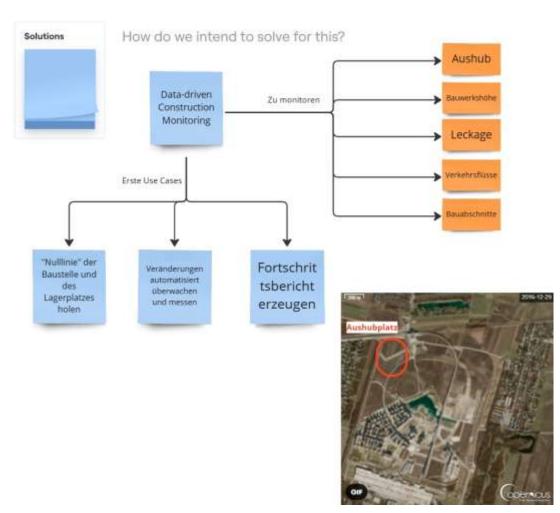
Kick-off: 24.03.2025, 10:00 – 12:30 Uhr, Wien

Interaktives Schulungs- und Workshopformat zu den innovativen Anwendungen von Satellitendaten und Luftbildaufnahmen in der Bau- und Immobilienwirtschaft.

Weiterbildung: Neues Wissen aufbauen


Jetzt Mitmachen:

DFS Innovationsparcours



DFS Innovationsparcours

Potenzielle Einreichung als Förderprojekt im Austrian Space Application Program (ASAP)

ASAP 2025

Das Austrian Space Applications Program

Förderung für Innovationen für Raumfahrttechnologien, Satellitenanwendungen und Weltraumwissenschaften

Von 22.01. - 10.04.2025, 12:00 Uhr werden ca. 12.850.000 Euro für Weltraumanwendungen ausgeschrieben. Pro Projekt bedeutet das bis zu 700.000 € und 85% Förderquote.

Schwerpunkte für "Weltraumanwendungen"

- Innovative Lösungen für die Energiewende, Mobilitätswende, Kreislaufwirtschaft und die klimaneutrale Stadt
- 2. Sonstige auf Erdbeobachtung, Navigation, Telekommunikation oder integrierter Dienste basierende Anwendungen
- 3. Wissenschaftliche Nutzung von Weltraumdaten zur Erarbeitung von Grundlagen für die grüne und die digitale Transformation

Eine gemeinsame Einreichung ist in Vorbereitung.

Data Driven Construction Monitoring

Förderprojekt Einreichung: Monitoring von Bauprozessen, insbesondere des Aushubs und Aushubmanagements im Sinne der **Kreislaufwirtschaft** am Bau unter Nutzung von Satellitendaten.

Herausforderungen umfassen:

- Intransparenz: Begrenzte Verfügbarkeit von Daten über den Baustellen und bewegten Volumen
- Manueller Aufwand: Hohe Arbeitskosten und Zeitaufwand bei der Baustellenüberwachung
- Datenunsicherheit: Misstrauen gegenüber Daten von Subunternehmern und anderen Quellen
- Infrastrukturbegrenzungen: Einschränkung, Kamerasysteme in bestimmten Bereichen einzusetzen

Fragestellungen für das Projekt:

- Datenquellen: Welche Datenquellen eigenen sich für die Überwachung der Baustellen und des Aushubs?
- **Zeitliche Auflösung**: Welche zeitliche Auflösung wird für welche Überwachung benötigt?
- Räumliche Auflösung: Welche räumliche Auflösung wird für welche Überwachung benötigt?
- **Kosten**: Für welche Überwachung können kostenfreie Daten genutzt werden und wo werden kostenpflichtige Daten benötigt?
- Akzeptanz: Wie müssen die Überwachungen bereitgestellt werden, damit die Nutzerakzeptanz hoch ist?

Projektphasen

Analyse, Spezifikation & Design

Entwicklung Prototypen

Verprobung in Pilotprojekt

Auswertung & Ergebnisverwertung

Vorstellung PIONEER-Projekt:

BIMecoLogic Smarte Datenstrukturen für ökologische Bauprozesse

Philipp Schuster
Digital Findet Stadt

Wachsende Bedeutung

Nachhaltigkeitsdaten gewinnen zunehmend an Bedeutung in der Bau- und Immobilienbranche.

Potential von BIM

BIM bietet großes Potenzial, Daten aus digitalen Gebäudemodellen für Nachhaltigkeitsberichte zu nutzen.

Fehlende Standards

Derzeit existieren keine oder nur unvollständige Standards zur Verankerung von Nachhaltigkeitsdaten in digitalen Bauprozessen.

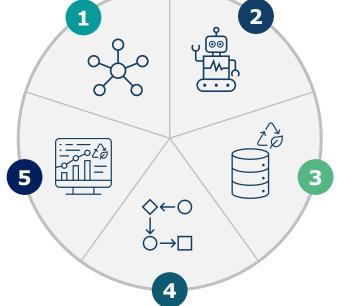
Heterogene Regulierungen

Die Vielzahl an unterschiedlichen Regulierungen und Zertifizierungssystemen erschwert eine einheitliche Umsetzung.

Ein flexibles und maschinenlesbares Modell für mehr Transparenz und Vergleichbarkeit

Flexibles Datenmodell für nachhaltige Bauprozesse

Erstellung eines erweiterbaren und flexiblen Datenmodells zur strukturierten Organisation von Nachhaltigkeitsmerkmalen


und deren Prüfkriterien.

Dynamisches Daten-Management-System

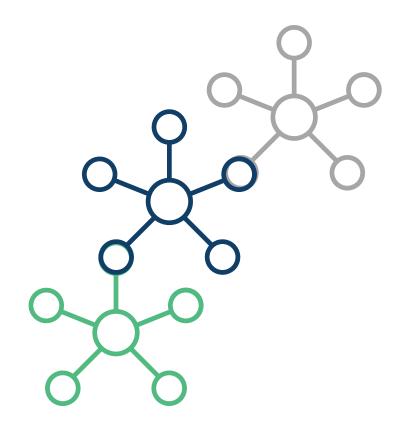
Entwicklung eines dynamischen Daten-Management-Systems als spezialisierte Plattform zur Verwaltung, Bereitstellung und Prüfung gebäudebezogener Nachhaltigkeitsdaten.

Maschinenlesbare Formate für digitale Workflows

Einführung von maschinenlesbaren Datenformaten zur Realisierung digitaler Workflows.

Vernetzung mit externen Datenquellen

Anbindung externer Material- und Produktdatenbanken zur Übernahme produktbezogener Nachhaltigkeitsdaten.


Prozessmodellierung und Verantwortlichkeiten

Prozessmodellierung für die Integration von Nachhaltigkeitsdaten in openBIM-Projekte. Integration prozess- und phasenbedingter Verantwortlichkeiten in das Datenmodell.

MASSNAHMEN

DATENMODELI

- Merkmaldefinition durch Beschreibung, Quelle, Datentyp und Einheit
- Merkmalkategorisierung in drei Ebenen (Ober-, Unter- und Detailkategorien) zur strukturierten und granularen Handhabung der Nachhaltigkeitsmerkmale.
- Darstellung unterschiedlicher **Anwendungsbereiche** (ESG-Reporting, EU-Taxonomie, Level(s)-Kriterien, DGNB, LEED, BREEAM etc.).
- Darstellung der Anwendungsbereich bezogenen **Prüfkriterien** auf Merkmalebene.
- Darstellung der phasenbezogenen Verantwortlichkeit für Datenlieferung und Datenhaltung auf Merkmalebene.
- IFC-Mapping und Mapping-Möglichkeit in Autoren-Tools (z. B. Archicad, Revit) für nahtlose Integration in BIM-Prozesse
- Flexibilität und Erweiterbarkeit: Modularer Aufbau, der eine anwendungsbezogene Erweiterung des Datenmodells und die Anpassung an neue regulatorische Anforderungen erlaubt.

- Übersichtlichkeit und Benutzerfreundlichkeit: Eine intuitive und klar strukturierte Benutzeroberfläche, die eine einfache Navigation und schnelle Erfassung von Nachhaltigkeitsinformationen ermöglicht.
- Interoperabilität: Unterstützung offener Standards (z. B. IFC, BCF, XML) zur nahtlosen Integration in bestehende BIM- und Nachhaltigkeitsbewertungssysteme. Unterstützung maschinenlesbarer Formate zur Automatisierung von Prüfprozessen und Datenvalidierung.
- Zentrale Datenhaltung und Versionskontrolle: Sicherstellung der Konsistenz und Nachverfolgbarkeit von Änderungen an Nachhaltigkeitsdaten.
- Integration von externen Datenquellen: Anbindung an Material- und Produktdatenbanken, Zertifizierungsplattformen und regulatorische Systeme zur automatisierten Übernahme relevanter Nachhaltigkeitsinformationen.
- Dynamisches LOIN-Management: Verwaltung von Detailierungsgraden (Level of Information Need) für verschiedene Projektphasen und Anwendungsfälle.

PIATTEORNA

Datenbankarchitektur

NACHSTE

2025	2026+		
Standardisierung und technologische Integration	Usability und Interoperabilität	Pilotprojekte und Evaluierung	
Erweiterung und Detaillierung des multidimensional klassifizierten Datenmodells	Anbindung externer Material- und Produktdatenbanken zur Übernahme produktbezogener Nachhaltigkeitsdaten.	Umsetzung von Pilotprojekten zur praktischen Erprobung und Weiterentwicklung des Datenmodells.	
2. Einführung maschinenlesbarer Daten- Format	2. Entwicklung eines dynamischen Daten- Management-Systems als spezialisierte Plattform	2. Sammlung von Feedback und Best Practices zur kontinuierlichen Verbesserung der Prozesse und Datenmodelle.	
3. Darstellung des Datenmodells in einer	3. Zentrale Datenhaltung und		

Versionskontrolle

Vorstellung PIONEER-Projekt: Construction Automation

Steffen Robbi Digital Findet Stadt

Construction Automation

Grundlagen eines Robotereinsatz im Bau und aktuelle Praxisbeispiele

Datum: 04.03.2025

Mitwirkende Unternehmen und Personen

Logo	Firma	Name teilnehmende Person
AIT.	AIT Austrian Institute of Technology GmbH	Matej Banozic Patrík Zips
Digital Facility	Digital Findet Stadt GmbH	Steffen Robbi
doka	DOKA	Nadine Pressmair Wolfgang Hochreiter Alexander Schager
1 NEVARIS	NEVARIS	Martin Worzfeld
pde	PDE	Herbert Meister
PORR	PORR	Elke Mayr Estefania Betancourt Lisa Mania Feigl Luca Lamencho Karina Schiefer
RIEDERBAU	Rieder Bau	Richard Thrainer
Servase fill Gode feet finn	Tomaselli Gabriel Bau	Marcel Mathis
SWIETELSKY	Swietelsky	Danijei Krajina
TU	TU-Wen	Karina Breitwieser Soleman Haj Bakour Niklas Jobst Tobi Huber
wienerberger	Wienerberger	Jörg Reinhold Meysam Taghavl Vanessa Rausch

Status und Nächste Schritte

Wo wir stehen (Ergebnisse 2024):

- Demonstration und Diskussion von 2 Technologien Ziegelroboter und Schalungsroboter
- Ableiten von Nutzen, Herausforderungen in der Umsetzung und Gemeinsamkeiten der Technologien
- Kernprinzipien f
 ür eine erfolgreiche Einf
 ührung von Robotik

Offene Fragen (2025):

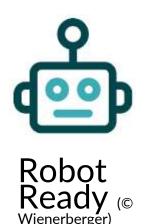
- Robot-Ready-Project welches Projekt eignet sich für einen Robotereinsatz?
- Robot-Ready-Design welchen Regeln muss die Planung gehorchen, um einen Robotereinsatz zu ermöglichen?
- Robot-Ready-Site worauf ist bei der Baustellenplanung und bei der detaillierten Arbeitsvorbereitung zu achten?
- Robot-Ready-People welche Kompetenzen werden für die betroffenen Rollen gebraucht?

Zielbild PIONEER-Projekt

Zusammenführen der wesentlichen Player

- Anbieter, Anwender und Forschung zusammenbringen
- Vernetzen der Stakeholder, die für die Umsetzung verantwortlich sind

Grundbedingungen für den Einsatz in der Praxis


- Zusammentragen der Informationen, die für den Einsatz erforderlich sind
- Erarbeitung von Unterlagen als Hilfestellung für die Anwendung

Wirksamkeit in der Branche

- Zusammenführen & Zur –Verfügung-Stellen aller Informationen auf einer Plattform
- Eventuell: Open Access Publikation mit Checklisten und Guidelines?

Ergebnisse: Checklisten und Richtlinien

Checkliste Robot Ready		
Robot Ready - Project		
• Welches Projekt eignet sich für den Robotereinsatz?		
Applikationsfelder für WLTR / dokaXbot /		
Erforderliche / optimale Randbedingungen		
Robot Ready - Design		
Regeln für die Planung		
Anforderungen an Geometrie, Bauteile, Wiederholbarkeit		
Einzusetzende Materialien & Produkte		
Robot Ready – Site		
Baustellenplanung		
Prinzipien für die effiziente Taktung		
Health & Safety Anforderungen		
Robot Ready – People		
Kompetenzen		
Ausbildungen		
Mindset		

Zentrales Ergebnis der Arbeit sind detaillierte Checklisten und Richtlinien, um den Einsatz von Robotics am Bau zu erleichtern.

Technologien (angestrebt)

Ablauf

Phase 1 Kick-off

Phase 2 Checkliste

Phase 3: Ergebnisse

Kick-off Innovationsparcours

- Start WS des Projektes
- Finetuning Ziele & Vorgangsweise

intensive Arbeitsphase:

- Interviews mit Baufirmen
- Workshops mit Herstellern
- Entwicklung der Checklisten
- Feedbackschleifen mit Baufirmen
- Demo-Days

Events:

- Event für Baufirmen
- DFS wirkt 10.12.2025

06.03.2025

Q2+Q3 2025

Q4 2025

Partner

Wen brauchen wir im Team?

Ausführende Firmen, die künftig Roboter einsetzen wollen

 Herstellern von Robotern und Automatisierungslösungen!

Wie profitieren diese von der Mitwirkung?

- Ausführende Firmen, erhalten konkrete Checklisten und Richtlinien zum Einsatz von Robotern, um schnell geeignete Baustellen und Projekte zu identifizieren
- Hersteller erhalten konkrete Entwicklungs- und Vertriebsanforderungen ihrer potentiellen Kunden

Vorstellung PIONEER-Projekt: 3D-Bestandserfassung und nachhaltiges Ressourcenmanagement

Michaela Gebetsroither
Digital Findet Stadt

Österreich muss sehr rasch viel mehr tun, um die Treibhausgasemissionen zu senken. Denn einem nun vorliegenden Bericht des Umweltbundesamts zufolge verfehlt Österreich bei Fortschreibung der bisherigen Klimaschutzmaßnahmen ganz klar die EU-Klimaziele für 2030: Die Treibhausgasemissionen würden dann bei 42 Millionen Tonnen CO2-Äquivalent liegen – das wären 13 Millionen mehr als vorgesehen. Kritik gab es von SPÖ und NEOS.

25. April 2023, 8.20 Uhr Dieser Artikel ist älter als ein Jahr.

Studie: Baubranche hat erhebliches Einsparpotenzial bei Klimagasen

Die Baubranche verursacht weltweit einen erheblichen Anteil der Treibhausgasemissionen. Doch dieser ließe sich zügig reduzieren, heißt es in einer Studie des VDI Zentrums Ressourceneffizienz.

Runter mit den grauen Bauemissionen

Klimaschutz heißt, CO₂-Emissionen reduzieren, so schnell und so umfassend wie möglich. Der Gebäudesektor ist einer der größten CO₂-Emittenten. Neben dem Energiebedarf für Heizen, Wärmen, Kühlen spielt ein weiterer Faktor eine zentrale Rolle: Bereits für die Errichtung von Bauwerken werden große Mengen an Energie benötigt, wenn Baumaterialien hergestellt, transportiert und entsorgt werden. Die durch die Herstellung emittierten, so genannten grauen Emissionen, müssen in den Blick – wenn die Fortschritte hinsichtlich der Energieeffizienz von Gebäuden nicht untergraben werden sollen.

Text: Christine Lemaitre, Pia Hettinger

Prognose
Österreich baut vor:
Kreislaufwirtschaft im Bau – lückenlos
umgesetzt.

Österreich setzt neue Maßstäbe in der Baubranche: Mit der vollständigen Umsetzung der Kreislaufwirtschaft gelingt der Spagat zwischen nachhaltigem Bauen, effizienter Ressourcennutzung und wirtschaftlichem Wachstum. Materialien werden wiederverwendet statt entsorgt, CO₂-Emissionen signifikant gesenkt und Wertstoffe bleiben im Kreislauf. Das Ergebnis? Lückenlose Prozesse, die von der Planung über den Bau bis hin zum Rückbau reichen – ressourcenschonend, klimafreundlich und wirtschaftlich sinnvoll. Österreich zeigt, dass nachhaltiges Bauen nicht nur möglich, sondern auch profitabel ist.

Österreich erreicht Klimaziele, Kreislaufwirtschaft treibt wirtschaftliche Innovation an

Österreich zeigt, wie nachhaltiges Bauen und wirtschaftlicher Fortschritt Hand in Hand gehen. Durch die konsequente Umsetzung der Kreislaufwirtschaft in der Baubranche werden CO₂-Emissionen drastisch reduziert, während die Wirtschaft floriert. Wiederverwendung von Materialien, ressourcenschonende Prozesse und innovative Technologien bilden das Fundament einer Bauindustrie, die nicht nur umweltfreundlich, sondern auch zukunftsfähig ist. Das Ergebnis: Ein starker Wirtschaftsstandort, der durch nachhaltige Innovationen glänzt und gleichzeitig einen wichtigen Beitrag zum Klimaschutz leistet.

Learnings auf einen Blick: Wo stehen wir aktuell?

- Was wir nicht wissen, können wir nicht wiederverwenden!
- Wertschöpfung scheitert, wenn Bestandsinformationen nicht zur richtigen Zeit verfügbar sind.
- Wissen über den Bestand ist nur wertvoll, wenn es die richtigen Akteure erreicht.
- Information über Baumaterialien entfaltet nur dann Wert, wenn klar ist, was damit getan werden kann – andernfalls bleibt sie ungenutztes Potenzial

Projektziele Digital Findet Stadt

Ziel des PIONEER-Projektes ist es, **Prozesse & Prototypen**

zu entwickeln, welche Informationen über verbautes Material in strukturierter und qualitätsgesicherter Form (auf Basis moderner Technologien) bereitstellen.

Workshopinhalte

DIGITALE
BESTANDSERFASSUNG:
EFFIZIENTE PROZESSE UND
TECHNOLOGIEN ZUR
DATENERHEBUNG.

OPTIMIERUNG DER
INFORMATIONSBEREITSTELLUNG
FÜR NACHHALTIGE &
STRATEGISCHE
GEBÄUDEPLANUNG.

VERWERTUNGSSTRATEGIEN: STRATEGIEN ZUR NUTZUNG VON POSTUSE-MATERIALIEN UND GEEIGNETEN VERWERTUNGSWEGEN.

Zentrale Fragestellungen

- Wie kann die digitale Bestandserfassung eine effiziente Informationsbereitstellung für die Kreislaufwirtschaft ermöglichen?
- Welche Möglichkeit der Informationsbereitstellung gibt es zur Verbesserung der Supply Chain
- Wie kann dadurch der Rücklauf von Produkten & Materialien sichergestellt werden?

Themenschwerpunkte

Schwerpunkt 1: Digitale
Bestandserfassung Effiziente Prozesse und
Technologien zur
Datenerhebung.

Schwerpunkt 2: Informationsinfrastruktur

- Optimierung der Informationsbereitstellung für nachhaltige & strategische Gebäudeplanung.

SuperScan: Der allumfassende Scan eines Gebäudes

- Gebäudeinformationen werden vollständig per Scan erfasst
- Materialinformationen können je nach technischer Möglichkeit mitgescannt werden
- Daten aus verschiedenen Quellen werden zu einem Gesamtbild zusammengeführt
- Verständnis für die geforderte Informationstiefe
- Reduzierung von Mehraufwand durch gemeinsame Nutzung der Scandaten
- Klare Vorgaben zur Datenerhebung sichern die erforderliche Datenqualität

Ziel: Entwicklung eines Lernprozess, wie müssen wir Informationen erheben und teilen? Welche Hard und Software kann uns hier Unterstützen. Was sind konkrete Vorgaben und Standards für die Datenlieferung, (zb. Use Case mit Open Government Data)

BIMMO.at TM

• BIMMO: Informationsplattform für Gebäudedaten über den Lebenszyklus

- Öffentliche BIM-Datenbank mit Zugriffsreporting
- Umfassende Gebäudeinformationen verfügbar
- Marktbereitschaft zur Informationsfreigabe als Voraussetzung
- Mechanismen zur Aktualisierung der Gebäudedaten müssen vorhanden sein

Ziel: Einheitliche Vorgaben und Standards für die Datenpflege werden definiert, Existierende Daten sind gesammelt und harmonisiert für eine effiziente Weiterverarbeitung.

Ablauf

Kickoff **27.03.2025**

Q1 & Q2 Bestandserfassung

Geplante Termine 30.04 & 06.06

Q3 & Q4 Informationsbereitstellung

Geplante Termine 04.09 & 16.10

Kick-off

- Start WS des Projektes
- Finetuning Ziele & Vorgangsweise
- Gemeinsame Aufgabenkoordination

Bestandserfassung

- Definieren eines Projektes für den Durchlauf
- Testen von relevanten Technologien für die Erhebung (Scan, Bilderkennung, Digitale Modelle)
- Welche Gebäudedaten müssen erfasst werden, Qualität und Umfang
- Diskussion über die Datenbereitstellung, Tiefe und Qualität
- Zb. Ergebnis: Datenvorgaben

Informationsinfrastruktur

- Welche Informationen sind relevant
- Wie müssen die Daten weiter zur Verfügung gestellt werden
- Datentiefe für effiziente Weiterverarbeitung
- (zb. Use Case anhand eines OpenGovernment Modelles und BiM Modelles?) – Plateau Projekt
- Zb. Ergebnis: Beispiel "Modell"

27.03.2025

Q1 + Q2

Q3 + Q4

Potentielle Forschungsprojekte

- 1. Bewertungscenter: Bewertungscenters auf Basis von öffentlichen EPD Daten als Grundlage für die Wiederverwendung von Bauteilen
- 2. Impactstudie für Kreislauffähige Baustoffe

Vorstellung PIONEER-Projekt: KI-Highlights

Steffen Robbi Digital Findet Stadt

Arbeitsgruppe 2024 IG Lebenszyklus und Digital Findet Stadt

Schulungen, Vorträge, Erfahrungsaustausch, Prototypen

- Teilnehmer: > 40 Personen
- 7 Workshops (März bis Oktober 2024) -> zusätzlich zahlreiche Kleingruppen-Workshops

Use-Cases

- KI im Officemanagement
- KI im Projekt- und Prozessmanagement
- KI in Planung und BIM
- KI in Ausführung und Betrieb

Ergebnisse 2024

Nicht die KI wird den Menschen ersetzen, sondern Menschen mit KI werden Menschen ohne KI-Nutzung ersetzen

2 Leitfäden:

- 1) Zusammenfassung
 - 2) Langversion

Prototypen

KI-HIGHLIGHTS 2025

KI-Highlights

Interaktive Vortragsreihe, Erfahrungsaustausch, Networking

Jeden 3. Freitag im Monat von 08:30 - 11:00 Uhr

28.02.: Konzeption von Prototypen

21.03.: Wissensdatenbanken

Themen

Richtiges Prompting Wissensdatenbanken

Wissensuatembanken

KI im Prozess- und Projektmanagement

Entscheidungsunterstützung durch KI

Personalisierung von Kundeninteraktion

KI im Entwurf und in der Planung

KI in der Gebäudetechnik und im Facility Management

KI in der Bild- und Videoanalyse (Computer Vision)

KI für Nachhaltigkeit und Ressourceneffizienz

KI für Marketing und Social Media

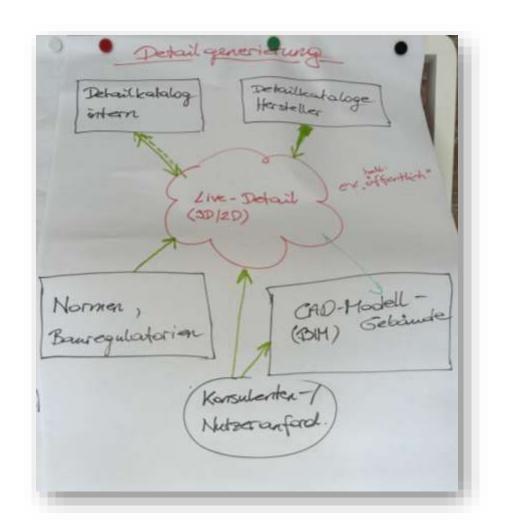
u.a.

<u>Interaktive Vortragsreihe: KI-Highlights - Digitalakademie</u>

ANGESTREBTE ENTWICKLUNGEN

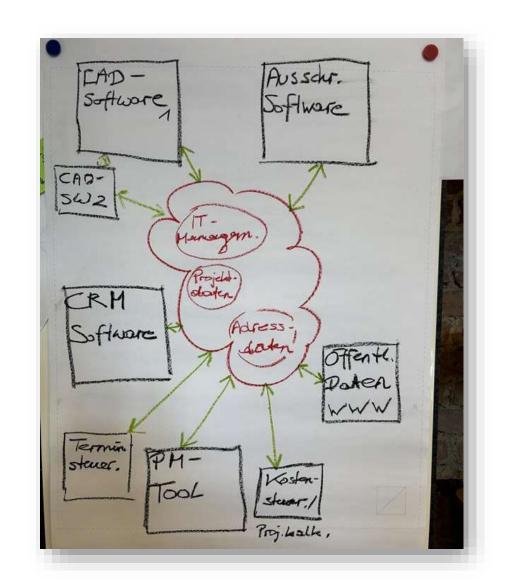
KI Frühwarnsystem "BauGuard AI"

- Problem: unzureichendes Risikomanagement von Projekten
- Ergebnis: Dashboard zur KIgestützten Risikobewertung von Bauprojekten
- Datengrundlage: Protokolle, Kostendatenbanken, Terminpläne



Baukostenüberschreitung: 18% Wahrscheinlichkeit Terminprobleme: 2% Wahrscheinlichkeit

"Live-Detail"


- Problem: immer wieder neue Zeichnung / Anpassung von konstruktiven Detailzeichnungen
- Ergebnis: KI-basierte Detailbibliothek (2D/3D)
- Datengrundlage: firmeninterne Detailkataloge, Herstellerdaten, Normen, BIM Modelle

Schnittstellenmanagement "Salvadore AI"

- Problem: kein Datenaustausch in gewachsener Systemlandschaft
- Ergebnis: Al-Agent für Schnittstellenmanagement
- Datengrundlage: Stammdaten, Softwaresysteme mit offenen Schnittstellen

"FacilitiQ"

- Probleme: Mangelnde Transparenz und Standardisierung und Wissenserhalt im Gebäudebetrieb. Normen sind aufgrund der Vielzahl an Beteiligten kaum realisierbar
- Ergebnis: zentrale Wissensplattform, die das gesammelte Know-how für künftige Entscheidungen nutzt
- Datengrundlage: Historische und aktuelle Informationen über Instandhaltungsmaßnahmen

Nächste Schritte Kl

KI-Highlights: Anmelden und Mitmachen!

Prototypen: Info an office@digitalfindetstadt.at

Konsortium bilden

Prototypen entwickeln

Ausrollen und Nutzen

MACHEN SIE MIT!

Gemeinsam in eine digitale Zukunft: Wie geht es weiter?

Follow-up

Im Anschluss erhalten
Sie eine Follow-upMail mit allen
relevanten Infos zu
PIONEER- und
Forschungsprojekten
sowie kommenden
Veranstaltungen.

Anmeldung zum PIONEER-Projekt

Melden Sie sich jetzt für Ihr gewünschtes PIONEER-Projekt an. Ganz einfach per E-Mail oder über unsere Website.

Jetzt anmelden!

PIONEER-Projekte 03.-12.2025

Mit unseren PIONEER-Partnern entwickeln wir in regelmäßigen Workshops innovative Konzepte, neue Lösungen und profitieren gemeinsam von Wissensvorsprung und Erfahrungsaustausch.

Forschungsprojekte

Bei Interesse bitte anmelden unter office@digitalfindetsta dt.at

DFS wirkt 2025 10.12.2025

Am 10.12.2025 laden wir unser gesamtes Netzwerk in die Welt des digitalen Planen, Bauens und Betreibens ein und präsentieren die Ergebnisse unserer PIONEER-Projekte bei DFS wirkt 2025.

Die Nächsten Schritte

Follow-up

Im Anschluss erhalten
Sie eine Follow-upMail mit allen
relevanten Infos zu
PIONEER- und
Forschungsprojekten
sowie kommenden
Veranstaltungen.

FÖRDERGEBER

Bundesministerium
 Klimaschutz, Umwelt,

Energie, Mobilität,

Innovation und Technologie

GESELLSCHAFTER

GET INVOLVED!

office@digitalfindetstadt.at | M +43 664 418 9214

www.digitalfindetstadt.at

